博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Boosting
阅读量:4949 次
发布时间:2019-06-11

本文共 1673 字,大约阅读时间需要 5 分钟。

Boosting is a greedy alogrithm. The alogrithm works by applying the weak learner sequentially to weighted version of the data, where more weight is given to examples that were misclassified by earlier rounds. Breiman( 1998) showed that boosting can be interperted as a form of gradient descent in function space. This view was then extended in (Friedman et al. 2000), who showed how boosting could be extended to handle a variety of loss functions , including for regression, robust regression, Poission regression, etc. 

1. Forward stagewise additive modeling:

   The goal of boosting is to solve the following optimization problem:

  \(\min_{f} \sum_{i=1}^N L(y_i, f(x_i))\)

and \(L(y,\hat{y})\) is some loss function, and f is assumed to be an (adaptive basis function model) ABM.

the picture above portries some possible loss function and their corresponding algrithm names.

2. The procedures of forward stagewise algorithm:

Input: training data: \( T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\); Loss function \(L(y,f(x))\); basis function set: \(b\{x;r\}\).

Output: addative model: f(x):

(1)  Initialize \(f_0(x)\).

(2) for m in  1,2,...,M:

  (a): minimize loss function:

    \((\beta_m,r_m) = argmin_{\beta,r} \sum_{i = 1}^{N}L(y_i,f_{m-1}(x_i) + \beta b(x_i;r))\);

     then we got the parameters: \(\beta_m,r_m\).

  (b): Update:

    \(f_m(x) = f_{m-1} (x) = \beta_m b_(x;r_m)\)

(3) additive model:

  \(f(x) = f_M(x) = \sum_{m =1}^N \beta_m b(x;r_m)\)

 

Reference:

1. Machine learning a probabilistic perspective 553-563.

2. The elements of statistical learning

3. http://blog.csdn.net/dark_scope/article/details/24863289

转载于:https://www.cnblogs.com/vpegasus/p/6884671.html

你可能感兴趣的文章
H5 页面调试小帮手-UC 开发者工具
查看>>
Unicode与UTF-8互转(C语言实现)【转】
查看>>
怎么快速对DB里的所有email进行校验
查看>>
SQL日期比较
查看>>
JavaScript全面学习(node.js)
查看>>
I/O模式总结
查看>>
2019春季第十一周作业
查看>>
洛谷P4591 [TJOI2018]碱基序列 【KMP + dp】
查看>>
iOS CoreData介绍和使用(以及一些注意事项)
查看>>
OS笔记047代理传值和block传值
查看>>
Android应用程序与SurfaceFlinger服务的连接过程分析
查看>>
coco2dx服务器简单例子
查看>>
Java回顾之多线程
查看>>
sqlite
查看>>
maven pom添加本地jar,不提交私库
查看>>
所有的包装类对象之间值的比较,全部使用equals方法比较。
查看>>
OC进阶(三)
查看>>
Android中Context详解——你所不知道的Context
查看>>
C#中DBNull.Value和Null的用法和区别
查看>>
P4782 【模板】2-SAT 问题
查看>>